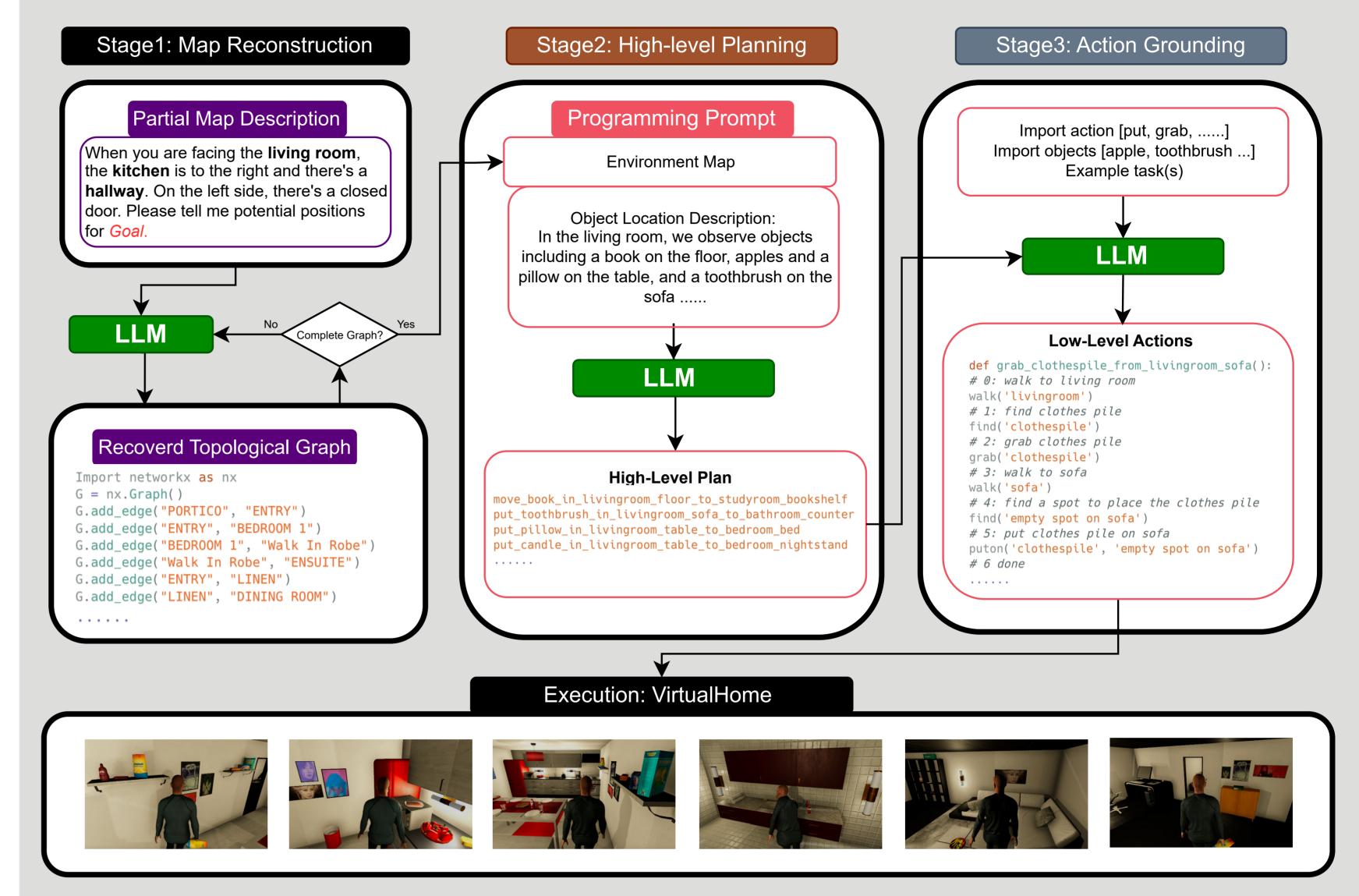
INTEGRATING COMMON SENSE AND PLANNING WITH LARGE LANGUAGE MODELS FOR ROOM TIDYING

Zhanxin Wu [zhanxinwu@u.nus.edu], Bo Ai [bo.ai@u.nus.edu], David Hsu [dyhsu@comp.nus.edu.sg]

Motivation


Do you want a personal robot housekeeper?

Given partial textual description of the layout from humans and description of objects, we endow robots with the capability of tidying up a room. This task has three challenges:

- Incomplete map information in the description
- Commonsense understanding of object locations
- Long-horizon planning for room tidying

System Architecture

The framework has three stages: (i) predicting spatial positions for unseen destination, (ii) generating a high-level plan for relocating misplaced objects, and (iii) grounding the plan into executable actions.

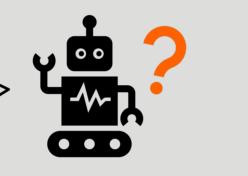


We provides preliminary evidence that LLMs have common sense about the **spatial layout of human-living environments** and **object arrangements**.

Problem Formulation

Hi, my housekeeper! From the living room, the kitchen is on the right side. There is a plate on the sofa in the living room. Please tidy up the living room.

Please move the **plate** from the **living room sofa** to the **dining room table**.


Map Reconstruction

Number of Interaction Rounds (NIR) Required to Recover Missing Places

Environment	#Places	Left-Out Places	N	IR	3.2m x 3.3m
			Ours	Random Guess	
VH Apartment	5	Bathroom	1.20 ± 0.45	2.82 ± 1.50	W.C. ACTIVITY 4.2m x 2.9m

The dining room is expected to be connected to the kitchen. Go to find it!

I find it, Please provide me with the steps to rearrange the **plate**.

.....

Step1: Walk to living room. Step2: Find the sofa.

- Assumption: (i) Semantic labels for each room in given map are provided. (ii) The executable actions for the agent are predefined.
- User Input: Textual descriptions of partial map and textual descriptions of objects in the room.
- System output: Executable action sequences for the agent to tidy up the room.

VII Apartment	5	Bedroom	1.60 ± 0.55	3.32 ± 1.43			
Real Apartment	15	Bathroom Bedroom	3.20 ± 1.30 2.40 ± 0.55	8.00 ± 4.56 7.20 ± 4.01	3.2m x 3.1m BED 3		
Hospital	20	Nurse's Station Bathroom	$\begin{array}{c} \textbf{1.40} \pm 0.55 \\ \textbf{2.20} \pm 2.17 \end{array}$	7.60 ± 5.64 5.60 ± 2.93			
School	17	IT Service Bathroom	3.40 ± 3.13 3.60 ± 1.34	$6.60 \pm 3.39 \\ 5.00 \pm 5.10$	DOUBLE GARAGE 5.7m x 6.0m	STUDY 2.5m x 1.8m	
Airport	25	Immigration Bathroom Info Desk	$\begin{array}{l} \textbf{1.80} \pm 0.45 \\ \textbf{1.60} \pm 0.55 \\ \textbf{1.60} \pm 1.34 \end{array}$	7.20 ± 6.85 6.20 ± 5.23 8.20 ± 3.31		FOYER	LOUNGE 3.7m x 4.4m
Mall	18	Bathroom	5.80 ± 0.83	7.40 ± 3.38		PORCH	

LLMs could suggest the correct location for unseen places within approximately 3 interaction rounds.

Compared to the random guess, our framework reduces interaction rounds by up to 80% and demonstrate much more stable performance.
However, commonsense fails in non-typical layouts: E.g., a bathroom is next to a health store in a mall.

Room Tidying

Success Rate, Execution Rate and Goal Condition Rate for Room Tidying

VirtualHome Room Tidying Results with Different Methods

	Method	Number of Misplaced Objects								
Room		2			4			12		
		SRC	ER	GCR	SRC	ER	GCR	SRC	ER	GCR
Living Room	Our Method ProgPrompt	1.00 0.60	1.00 1.00	1.00 0.70	0.80 0.40	0.76 0.92	0.95 0.70	0.40 0.00	0.70 0.79	0.69 0.15
Kitchen	Our Method ProgPrompt	0.60 0.60	1.00 0.96	0.70 0.70	0.60 0.20	0.90 0.97	0.83 0.65	0.20 0.00	0.76 0.94	0.78 0.17
Bathroom	Our Method ProgPrompt	1.00 0.40	1.00 0.89	1.00 0.50	0.60 0.20	1.00 0.93	0.90 0.45	0.40 0.00	0.96 0.81	0.57 0.20
Bedroom	Our Method ProgPrompt	0.80 0.40	0.90 0.91	0.90 0.60	0.80 0.20	0.96 0.82	1.00 0.35	0.60 0.00	0.98 0.94	0.65 0.22

Original Messy Room

Room Tidied by ProgPrompt Room Tidied by Our Method

□ In all scenarios, 60% of misplaced objects can be placed correctly, and up to 80% in less messy rooms.

Hierarchical planning is effective in enabling LLMs to reason about long-horizon action plans and avoid generate irrelevant actions.