# Image: Second systemMeta-Policy Learning over Plan Ensembles for Robust<br/>Articulated Object Manipulation<br/>Constantinos Chamzas<sup>12</sup>, Caelan Garrett<sup>1</sup>, Balakumar Sundaralingam<sup>1</sup>,<br/>Lydia E. Kavraki<sup>2</sup>, Dieter Fox<sup>2</sup><br/>1.Nvidia 2.Rice University

# **Articulated Object Manipulation in Uncertain Domains**



# **Problem Settings**

- Geometry of the cabinet and robot are known
- Position of the robot relative to the cabinet is **uncertain**
- Kinematic and Geometric model is available but dynamics not modeled

# Limitations of Existing Methods

- Model-based planners fail when the world model is not perfectly known
- Pure learning-based methods require a lot of training data and don't

#### Start State (Open Door) Goal State (Closed Door)

leverage prior constraints knowledge

# Learning a Policy over Path Ensembles



# Key Insights

Use model-based planners to create candidate paths that satisfy known constraints
Use learning to choose the most promising path based on past proprioceptive observations

# **Contributions:**

- Ensemble approach for manipulation which outperforms single-trajectory planners
- Learning strategy to select online among the ensemble
- Experiments in simulation that the proposed method outperforms pure model-based planning resulting in up to 40%

| Algorithm 1 Plan Ensemble Pseudocode        |                                                               |                                    |
|---------------------------------------------|---------------------------------------------------------------|------------------------------------|
| 1: procedure PLAN-ENSEMBLE( $G, \Pi_p, K$ ) |                                                               |                                    |
| 2:                                          | $\Pi_p \leftarrow \emptyset$                                  | Plan-Ensembles                     |
| 3:                                          | while $i \leq N$ do                                           | Create Plan-Ensembles              |
| 4:                                          | $\hat{s} \leftarrow \text{SAMPLE-WORLD}($                     | ()                                 |
| 5:                                          | $p \leftarrow \text{PLAN}(\hat{s}, G)$                        | Plan Geometric Path                |
| 6:                                          | $\pi_p \leftarrow \text{MAKE-POLICY}(p)$                      | <ul><li>c) ▷ Create Plan</li></ul> |
| 7:                                          | $\Pi_p \leftarrow \Pi_p \cup \pi_p$                           |                                    |
| 8:                                          | while $t \leq T$ do                                           | Iteratively Reselect Plan          |
| 9:                                          | $o \leftarrow \text{OBSERVE}()$                               |                                    |
| 10:                                         | $\pi_p^{chosen} \leftarrow \operatorname{argmax} \mathbf{BE}$ | $\mathbf{ST}(o, \pi_p)$            |
|                                             | $\pi_p \in \Pi_p$                                             |                                    |
| 11:                                         | while $PROGRESS(o, p)$                                        | ) do                               |
| 12:                                         | $o \leftarrow \text{OBSERVE}()$                               | Observe State                      |
| 13:                                         | if $o \in G$ then                                             |                                    |
| 14:                                         | return True                                                   | ▷ Success!                         |
| 15:                                         | $r \leftarrow \text{EXECUTE}(\pi_p^{ch})$                     | osen)                              |
| 10                                          |                                                               |                                    |

higher success rate

16: return False

#### **Simulation Results**



**Exp1: Using Plan Ensembles and Progress Rule:** Performance of method when using plan ensembles (*MULTI*) or not (SINGLE) and monitoring progress (**Progress**) or not (**Fixed**). All configurations were tested on a 100 different environments, with a 200 timesteps limit



**Exp2: Learning the MetaPolicy:** Performance of method when using random strategies with (RandProgress) and without (RandNoProgress) the progress monitor rule, and when using learned strategies with different feature sets (LearnedF1 / LearnedF2). The x-axis denotes the translational estimation error on the cabinet position.

**LearnedF1:** Learning strategy using only geometric features such as the current and target state for the robot, and the door. **LearnedF2:** Learning strategy using the F1 geometric features and additionally 5 observations from the last 5 timesteps.