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Goal State (Closed Door)

Articulated Object Manipulation in Uncertain Domains

Problem Settings
 Geometry of the cabinet and robot are known
* Position of the robot relative to the cabinet Is uncertain

« Kinematic and Geometric model is available but dynamics not modeled

Limitations of Existing Methods

* Model-based planners fail when the world model is not perfectly known

* Pure learning-based methods require a lot of training data and don't
leverage prior constraints knowledge

<A NVIDIA Meta-Policy Learning over Plan Ensembles for Robust

Given Task

Push RED Object to GOAL

START GOAL

Choosing a Plan

T Plan C

Learning a Policy over Path Ensembles

Key Insights

Algorithm 1 Plan Ensemble Pseudocode

1: procedure PLAN-ENSEMBLE(G, 1I,,, K)
 Use model-based planners to create candidate 22 1L, + 0

> Plan-Ensembles

paths that satisfy known constraints 3 while: < NV do ()D Create Plan-Ensembles
: . 4. S < SAMPLE-WORLD
Use learning to choose th_e mos_t promising " o 4 FLANE, ) s Plan Cleometic Path
path based on past proprioceptive observations . 7, <~ MAKE-POLICY (p) o Cieats Pla
: : _ 7: II, «II, U
Contributions: i T ¥ |
. Ensemble anproach for manioulation which 8: while ¢ < 7" do > Iteratively Reselect Plan
pp_ _ P 9: 0 <— OBSERVE()
outperforms single-trajectory planners 10: nchosen ¢ argmax BEST(0,,)
° ' ' Tp€lly
Learning strategy to select online among the " while PROGRESS(0, p) do
ensemble 12: 0 <— OBSERVE() > Observe State
* EXxperiments in simulation that the proposed 13: if o € G then
method outperforms pure model-based 14: Svisnslaise g > Success!
planning resulting in up to 40% > 4= EXECUTE(m, ™)
16: return False > Failure

higher success rate

Simulation Results

1.0

0.8
0 0,6
: 0.4

Success Rate

SINGLE MULT]

Pt
-
-

-
LI
-

DS

num ste

—

-

-
& dies i .
PRI . R

Number of steps

L
-

SINGLE MULT]

Distance to Goal (Closed

[
Ln

—a
-

=
L

door joint distance

=
o

SINGLE MULTI

Door)

RULE
B FIXED
= PROGRESS

Expl: Using Plan Ensembles and Progress Rule: Performance of method when using plan ensembles (MULTI) or not (SINGLE) and
monitoring progress (Progress) or not (Fixed). All configurations were tested on a 100 different environments, with a 200 timesteps limit
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METHOD

RandNoProgress
RandProgress
LearnedF1
LearnedF?2

Exp2: Learning the MetaPolicy: Performance of method when using random strategies with (RandProgress) and without (RandNoProgress)
the progress monitor rule, and when using learned strategies with different feature sets (LearnedF1 / LearnedF2). The x-axis denotes the
translational estimation error on the cabinet position.

LearnedF1: Learning strategy using only geometric features such as the current and target state for the robot, and the door.
LearnedF2: Learning strategy using the F1 geometric features and additionally 5 observations from the last 5 timesteps.
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