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Problem Setting

• Deterministic & fully observed
• States are object-centric

• Continuous feature vector per object (right)

• Actions are parameterized controllers
• E.g., Pick(obj5, [2.3, 6.7, 5.8])

• Transition model is known
• Training tasks & demos, evaluation tasks

• Evaluation tasks unknown during training

• Task goals use given goal predicates

Problem: The "Prediction Error" view in an attempt to
predict the entire next state leads to complex operators and
not well-aligned with our real objective. See panel below.

Learning Operators For Planning

Planning in robotics domains is hard
1. Continuous state spaces
2. Continuous action spaces
3. Long horizons
Abstractions can help
1. State abstractions
2. Action abstractions
3. Transition model abstractions
We focus on given 1. how do we learn 2. and 3.

Our objective: Learn operators that can be used
for effective and efficient planning in robotics do-

mains where optimizing prediction error fails.

Bilevel Planning

• Outer loop: AI planning with learned symbolic operators
• Inner loop: backtracking search with learned neural samplers needed to handle

Non-Downward Refinability

Key Terms:
• Non-Downward Refinability is a property of abstractions for planning where find-

ing a high-level plan does not guarantee success on the first execution of low-level
actions

• Necessary Atoms are a subset of the abstracted state’s atoms which are the con-
ditions that must hold true for an abstract plan suffix to legally achieve the goal.

Operator Learning Objective

We learn operators directly optimized for efficient planning
1. Estimate the set of necessary atoms from our data given our current candidate operators
2. Learn new operators that ’cover’ those necessary atoms
3. Iterate between 1-2 until a fix point is reached within our hill-climbing search

Our objective is designed to prevent the overfitting that optimizing prediction
error leads to. We want to measure coverage in terms of necessary atoms
matching trajectories and not in terms of prediction error, as is typically done.

Learned Neuro-Symbolic Operators

Neuro-Symbolic Operators contain an operator (above) defining high-level logic
used for planning, as well as a parametrized controller and a sampler for low-level

execution

Experimental Results

Key findings:
• Performs very well compared to

several baselines in challenging
robotics domains

• Learned abstractions that are
robust to non-Downward
Refinablity

• Little data is required to learn
good abstractions

Link to paper!
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Learning Operators via Hill-Climbing

• PreImageBackchaining (Algorithm 1) employs a backchaining procedure to com-
pute necessary atoms and plan suffixes, starting from the known atoms of the
final timestep, and using a heuristic to select the best operator from multiple
possibilities

• Hill-Climbing Search (Algorithm 2) optimizes our objective by using preimage
backchaining to compute necessary atoms leverages


