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Introduction

Sampling-based motion planning algorithms search for global so-

lution paths in geometrically complex environments. We ar-

gue that model-based reinforcement learning (RL) under sparse

rewards could benefit from such powerful planning strategies.

Figure 1. Taken from [2]: A tree (blue) is iteratively

grown and optimized while being bound to the

estimated latent support region (gray).

Previous work [2] achieves

planning from visual obser-

vations by adapting Expan-

sive Space Trees (ESTs) [3]

to search for paths that con-

nect states in a learned state

embedding. In this work, we

extend [2] towards the more

general reward-based learning setting.

Type of Control Tasks

Our goal is to solve MDP tasks with continuous states, actions, and

a binary reward function indicating success. We evaluate our method

on problems with high-dimensional visual observations (short video se-

quences) and provide an offline dataset D consisting of suboptimal tra-
jectories for training.

Our Method - Overview

VELAP presents a model-based RL agent that determines sequences of

subgoals towards a global goal (region of positive reward) through tree-

based exploration of a latent state space.
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Figure 2. A search tree is grown in the latent space to globally explore reward-maximizing

paths (blue:start, red:goal nodes, green: estimated values).

Our method consists of the following components:
State encoder: φ : S → Z

Dynamics: h : Z ×A → Z (1)

Action model: g : Z × Rm→ A
Local policy: πl : Z×Z→A Ql : Z×Z×A→R
Global policy: πg : Z→A Qg : Z×A→R

Offline Model Learning

We train the state encoder jointly with our dynamics model and lo-

cal/global policy/Q-function (TD3-BC [1]). The local policy learns state

reaching behavior for which we synthesize a dataset D′ using hindsight
goal relabeling. For Lh, we use a contrastive objective similar to CPC [4].

Lmodel =LQl + c0 · LQg + c1 · Lh (2)

LQl =E
D′

[(Ql(zt, zg, at)− (rt + γQl(zt+1, zg, πl(zt+1, zg))))2] (3)

LQg =E
D

[(Qg(zt, at)− (rt + γQg(zt+1, πg(zt+1))))2] (4)
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Planning Algorithm
Our planner creates a tree in

the latent state space by iter-

ating between (a) randomly

choosing an existing node

zexp in the tree (b) generating

a new node znew from zexp
using the learned dynamics

model.

The tree is sparsified by

rejecting nodes that are too

close to existing ones. We

avoid exploration outside the

data support by discarding

unlikely transitions.

Algorithm 1 Node sampling and tree expansion

1: Given: zinit, niter, nsim, τ
neigh
discard

, τ std
discard

g, h, πg,Qg,Ql
k,

πl

2: Initialize: V ← {zinit}, E ← ∅
3: for niter steps do
4: Sample node zexp from V given Pnode(V)
5: znew← zexp
6: Simulate forward using dynamics for nsim steps
7: for nsim steps do
8: Sample action a∼g(.|znew) (or a=πg(znew))
9: znew ← h(znew, a)
10: end for

11: Reject node if too close to existing one in the tree, too far

12: from expansion node or if the value uncertainty is too high

13: if Qexp,new
min > τ lowdiscard and Qexp,new

std
< τ stddiscard then

14: if max{Qi,new
min |zi ∈ V} < τhigh

discard
then

15: Add new node to tree

16: V←V ∪ {znew}; E←E ∪ {zexp→new}
17: end if

18: end if

19: end for

Biased node+action sampling is introduced to ensure efficient and goal-

direction exploration (see full article).

MPC Evaluation in Simulation
We embed our planner into a MPC loop. After every replanning step, we
identify the set of tree nodes with close vicinity to the goal and pick the
one associated with the minimum travel cost. The local policy achieves
navigation between the waypoints of the planned paths.

(a) SpiralMaze (b) ObstacleMaze (c) WindowClose (d) FaucetClose (e) ButtonWall (f) DrawerButton

Figure 3. Vision-based control environments(c-f adapted from meta-world benchmark [5]).

Table 1. Success rates (%) on test scenarios.

Method BC BC (D∗) TD3-BC MPPI MBOP IRIS IRIS (multi-step) VELAP

Spiral Maze 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 15± 31 94± 3

Obstacle Maze 0± 0 15± 6 35± 22 83± 11 40± 25 50± 25 62± 14 97± 2

Window 0± 0 34± 11 16± 8 70± 7 23± 4 69± 3 43± 20 78± 4

Faucet 0± 0 36± 6 13± 7 41± 7 33± 2 10± 2 3± 1 51± 12

ButtonWall 0± 0 0± 0 2± 2 9± 10 0± 0 35± 5 8± 8 76± 9

DrawerButton 0± 0 0± 0 0± 0 0± 0 0± 0 5± 3 0± 0 11± 3

Visualizations
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Figure 4. SpiralMaze: (a) xy coordinates of robot (b) 2d-embedding of latent space (c) environment reward (d) learned Q-values

(latent space) (e) learned Q-values (xy) (f) example scenario (g) latent path

(a) (b) (c) (d) (e) (f) (g)

(a) (b) (c) (d) (e) (f) (g)

Figure 5. ObstacleMaze: (a) xy coordinates of robot (b) 2d-embedding of latent space (c) environment reward (d) learned

Q-values (latent space) (e) learned Q-values (xy) (f) example scenario (g) latent path

Limitations and Future Directions
VELAP is currently limited to fully observable states. We plan to extend
our method to partially observable states by adapting recursive state es-
timation. Other future directions include planning strategies that account
for uncertainty, or multimodal state representations (e.g. include propri-
oceptive information).
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